Mgr. Michal Opler, Ph.D.

Publikace

Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology

Rok
2024
Publikováno
Proceedings of the 38th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2024. p. 17380-17388. ISSN 2159-5399.
Typ
Stať ve sborníku
Anotace
In the Multiagent Path Finding (MAPF for short) problem, we focus on efficiently finding non-colliding paths for a set of k agents on a given graph G, where each agent seeks a path from its source vertex to a target. An important measure of the quality of the solution is the length of the proposed schedule l, that is, the length of a longest path (including the waiting time). In this work, we propose a systematic study under the parameterized complexity framework. The hardness results we provide align with many heuristics used for this problem, whose running time could potentially be improved based on our Fixed-Parameter Tractability (FPT) results. We show that MAPF is W[1]-hard with respect to k (even if k is combined with the maximum degree of the input graph). The problem remains NP-hard in planar graphs even if the maximum degree and the makespan l are fixed constants. On the positive side, we show an FPT algorithm for k+l. As we continue, the structure of G comes into play. We give an FPT algorithm for parameter k plus the diameter of the graph G. The MAPF problem is W[1]-hard for cliquewidth of G plus l while it is FPT for treewidth of G plus l.

The Hierarchy of Hereditary Sorting Operators

Autoři
Jelínek, V.; Opler, M.; Pekárek, J.
Rok
2024
Publikováno
Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA ’24. Philadelphia: SIAM, 2024. p. 1447-1464. ISBN 978-1-61197-791-2.
Typ
Stať ve sborníku
Anotace
We consider the following general model of a sorting procedure: we fix a hereditary permutation class C, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation π of the set [n] = {1, 2,…,n}, i.e., a sequence where each element of [n] appears once. In every step, the sorting procedure picks a permutation σ of length n from C, and rearranges the current permutation of numbers by composing it with σ. The goal is to transform the input π into the sorted sequence 1, 2,…,n in as few steps as possible. Formally, for a hereditary permutation class C and a permutation π of [n], we say that C can sort π in k steps, if the inverse of π can be obtained by composing k (not necessarily distinct) permutations from C. The C-sorting time of π, denoted st(C; π), is the smallest k such that C can sort π in k steps; if no such k exists, we put st(C; π) = +∞. For an integer n, the worst-case C-sorting time, denoted wst(C; n), is the maximum of st(C; π) over all permutations π of [n]. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the function wst(C; n), and relate it to structural properties of C. As the main result, we show that any hereditary permutation class C falls into one of the following five categories: • wst(C; n) = +∞ for n large enough, • wst(C; n) = Θ(n2), • Ω(√n) ≤ wst(C; n) ≤ O(n), • Ω(log n) ≤ wst(C; n) ≤ O(log2 n), or • wst(C; n) = 1 for all n ≥ 2. In addition, we characterize the permutation classes in each of the five categories.