Tomáš Přeučil, MSc.

Publikace

Evaluation of power saving methods for low-power WiFi environment sensors

Rok
2022
Publikováno
Proceedings of the 11th Mediterranean Conference on Embedded Computing (MECO 2022). Institute of Electrical and Electronics Engineers, Inc., 2022. p. 114-118. ISSN 2377-5475. ISBN 978-1-6654-6828-2.
Typ
Stať ve sborníku
Anotace
Environment sensing devices are all around us and the instruction cycle of these devices is usually simple: wake up, measure data, send them to a central unit or to the cloud and enter deep sleep. These devices also need to last as long as possible on a single charge and when we say single charge, we mean months at least. This leads to one common problem-these devices usually use low data rate networks like ZigBee or LoRa and therefore are not easy to deploy for a common user. There are several ways of achieving low power consumption when using WiFi. This paper describes and evaluates these methods and recommends power-saving methods for the WiFi module ESP8266. This paper also describes the development of a reference low-power device that can sense the environment (temperature, humidity and pressure in this case) and uses 2.4 GHz WiFi. Therefore, this device does not need any sort of gateway and can connect directly to the network most users already have deployed. Current programming allows for quick and easy transmission of the data to an MQTT server. It is easy to quicks tart usage and mass production of the presented prototype. The system is based on the popular ESP8266 as a base for measurement, processing and WiFi communication. For power management, more circuitry is used. The paper presents a full reference schematics of the developed device.

Implementation of the Rainbow signature scheme on SoC FPGA

Rok
2022
Publikováno
Proceedings of the 2022 25th Euromicro Conference on Digital System Design. Los Alamitos: IEEE Computer Society, 2022. p. 513-519. ISBN 978-1-6654-7404-7.
Typ
Stať ve sborníku
Anotace
Thanks to the research progress, quantum computers are slowly becoming a reality and some companies already have their working prototypes. While this is great news for some, it also means that some of the encryption algorithms used today will be rendered unsafe and obsolete. Due to this fact, NIST (US National Institute of Standards and Technology) has been running a standardization process for quantum-resistant key exchange algorithms and digital signatures. One of these is Rainbow—a signature scheme based on the fact that solving a set of random multivariate quadratic system is an NP-hard problem. This work aims to develop an AXI-connected accelerator for the Rainbow signature scheme, specifically the Ia variant. The accelerator is highly parameterizable, allowing to choose the data bus width, directly affecting the FPGA area used. It is also possible to swap components to use the design for other variants of Rainbow. This allows for a comprehensive experimental evaluation of our design. The developed accelerator provides significant speedup compared to CPU-based computation. This paper includes detailed documentation of the design as well as performance and resource utilisation evaluation.

Low-Cost Portable ECG

Rok
2019
Publikováno
Proceedings of the 8th Mediterranean Conference on Embedded Computing - MECO'2019. Institute of Electrical and Electronics Engineers, Inc., 2019. p. 660-663. ISSN 2377-5475. ISBN 978-1-7281-1739-3.
Typ
Stať ve sborníku
Anotace
Common contemporary ECG units are computer-based devices that can be connected to the computer network to enable simultaneous monitoring of several patients in, e.g., intensive care units. Typically, these devices are relatively large, heavy, and powered from the wall socket. As a result, the movement of a patient is limited, even in cases when the patient’s physical condition does not bind him/her to the bed. This paper describes proof-of-concept portable device for electrocardiography which can measure three elemental ECG leads, is battery powered and transmits measured data into a central data collection unit via WiFi. Therefore, the patient can leave the bed for a reasonable distance, while the physician can continue monitoring the patient’s health condition. It is easy to quickstart usage and mass production of the presented prototype. We have tested the hardware and developed the necessary software. The system is based on ADAS1000 from Analog Devices as an ECG analogue front-end. Measured data are processed by STM32L0 MCU and sent to the data collection unit using the ESP8266 WiFi module.