Time left 1:15:21

Question 1	
Not yet answered	
Marked out of 6	
A Turing machine has	
Select one or more:	
\Box a. a tape whose length is limited by the length of input string.	

 \Box b. a tape of infinite length.

 $\hfill\square$ c. a tape that can be used both for reading and writing.

□ d. an infinite number of internal states.

Question 2

Not yet answered

Marked out of 4

The language $L=\{a^nb^m:\,n\geq 0,\,m\geq 1\}$

Select one or more:

 $\hfill\square$ a. can be generated by a grammar that does not contain recursion.

- \Box b. can be described by a regular expression.
- \Box c. contains the string *aabbb*.
- \Box d. contains the string *ababb*.

Question 3

Not yet answered Marked out of 4

The multiplicative inverse of 4 modulo 7 is

Select one:

- a. 6
- b. 3
- \bigcirc c. does not exist
- ⊖ d. 2

Question 4

Not yet answered Marked out of 6

Little Fermat's Theorem states that:

Select one:

Оа.	$a^{(p-1)}\equiv 1 \pmod{p}$, where p is a prime and a is an integer coprime to p
○ b.	$a^{(p-1)}\equiv 0 \pmod{p}$, where p is a prime and a is an integer coprime to p
○ c.	$a^{(p-1)}\equiv 1 \pmod{p}$, where p is a prime and a is an integer.
○ d.	$a^{(p-1)}\equiv 1 \pmod{p}$, where p and a are composite numbers.

Question 5

Not yet answered

Marked out of 6

Transaction journal (log file, WAL) in a relational database

□ a. keeps track of all actions executed by the database management system.

- \Box b. is used to store metadata.
- \Box c. is used for data recovery after the database system crash.
- \Box d. is used for debugging of SQL commands.

Question 6

Not yet answered

Marked out of 4

Data Manipulation Language (SQL DML)

Select one or more:

- □ a. contains the commands INSERT, UPDATE, and DELETE
- □ b. contains the commands GRANT, REVOKE
- □ c. contains the commands COMMIT, ROLLBACK
- □ d. contains the commands CREATE, ALTER, and DROP

Question 7

Not yet answered

Marked out of 6

Which of the following properties for summation and multiplication of square matrices $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{n,n}$ are correct?

Select one or more:

- \square a. $(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{A}^T \cdot \mathbf{B}^T$
- \Box b. $(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$ (distributive law)
- \Box c. $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$ (commutative law)
- \Box d. $\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$ (asociative law)

Question 8

Not yet answered Marked out of 4

Suppose matrix A has an inverse matrix A^{-1} . Which ones of the following statements are true?

Select one or more:

- \Box a. The rank of matrix **A** is smaller than the number of its rows.
- \Box b. The determinants of \mathbf{A} and \mathbf{A}^{-1} are equal.
- \Box c. The ranks of **A** and **A**⁻¹ are equal.
- \Box d. Matrix **A** is regular.

Question 9

Not yet answered

Marked out of 4

Simplify the following propositional logic formula $B \land (A \lor \neg (\neg B \lor A)).$

Select one:

 $\bigcirc a. \quad B$ $\bigcirc b. \quad B \land A$ $\bigcirc c. \quad B \land \neg A$ $\bigcirc d. \quad B \lor \neg A$

Question 10	
Not yet answered	
Marked out of 6	

Assuming that p(x) is a unary predicate, which ones of the following predicate logic formulae are logical consequences of $\neg(\exists x)p(x)$?

Select one or more:

 $\begin{array}{c|c} \begin{array}{c} \text{a.} & (\forall x) \neg p(x) \\ \hline \end{array} \\ \begin{array}{c} \text{b.} & (\forall x)p(x) \\ \hline \end{array} \\ \begin{array}{c} \text{c.} & (\exists x)p(x) \\ \hline \end{array} \\ \begin{array}{c} \text{d.} & (\exists x) \neg p(x) \end{array} \end{array}$

Question 11

Not yet answered Marked out of 4

A RAID array consists of 10 identical physical disks. Which type of RAID has the smallest redundancy?

Select one:

a. RAID 0 + 1
 b. RAID 1 + 0
 c. RAID 5
 d. RAID 6

Question 12	
Not yet answered	
Marked out of 6	

A hard disk drive has a rotational speed of 6000 RPM. What is its average rotational latency (delay) when reading one disk sector?

Select one:

- a. 5ms
- b. 10ms
- c. 1ms
- \bigcirc d. Oms

Question 13

Not yet answered

Marked out of 4

A binary tree depth is 2 (its root depth is 0). The number of leaves of such a tree is

Select one or more:

- $\hfill\square$ a. at least 1 and at most 3.
- □ b. at least 2 and at most 4.
- \Box c. at least 0 and at most 2.
- \Box d. at least 1 and at most 4.

Question 14

Not yet answered

Marked out of 4

The network address mask /23 of IPv4 can be written as:

Select one:

○ a. 255.255.248.0

- O b. 255.255.255.128
- c. 255.255.254.0
- d. 255.252.0.0

Question 15

Not yet answered Marked out of 6

The head of a TCP packet includes the source and destination ports. The value is used for

Select one:

- \bigcirc a. discovery of the receiver sliding window size.
- $\bigcirc\,$ b. checking of the implemented TCP version.
- $\,\bigcirc\,$ c. $\,$ identification of the process involved in the communication.
- \bigcirc d. marking of special data in the TCP flow.

Question 16 Not yet answered Marked out of 4

There are 4 men and 3 women at a party. In how many different ways could we form two mixed pairs from them (the order of pairs is irrelevant)?

Select one:

0	a.	30
0	b.	60
0	c.	66
0	d.	36

Question 17	
Not yet answered	
Marked out of 6	

How many natural numbers from the interval $\left[1,960 ight]$ are coprime with 960?

Select one:

a. 352
b. 511
c. 127
d. 481
e. 256

Question 18	
Not yet answered	
Marked out of 6	

Consider we have a pointer to the start of a singly linked list containing exactly *n* elements. If we use a best known algorithm to insert a new element in the last list position, what is the dependence of the number of steps needed to do the insertion on the list size *n*?

Select one:

- \bigcirc a. logarithmic
- \bigcirc b. quadratic
- \bigcirc c. does not depend
- \bigcirc d. linear

Question 19

Not yet answered Marked out of 6

Which of the following assertions are correct?

Select one or more:

- \Box a. If two random variables are uncorrelatedm, then they are independent.
- \Box b. If two random variables are independent, then they are uncorrelated.
- C. If two random variables are independent, then they have zero variances.
- $\Box\,$ d. If two random variables are uncorrelated, then theirs covariance equals zero.

Question 20

Not yet answered

Marked out of 4

Output Y of a multiplexor with two data inputs D_0 and D_1 and one control input E can be expressed by the expression:

Select one:

 $\begin{array}{lll} \bigcirc \mbox{ a. } & Y = D_0.\,E + D_1.\,E \\ \bigcirc \mbox{ b. } & Y = D_0.\,D_1.\,E \\ \bigcirc \mbox{ c. } & Y = D_0.\,\overline{E} + D_1.\,E \\ \bigcirc \mbox{ d. } & Y = \overline{D_0}.\,\overline{E} + D_1.\,E \end{array}$