Seminář G²OAT: Parameterised distance to local irregularity

When

30. 9. 2024
13:00 – 14:00

Where

Room TH:A-1247

Thákurova 7, Prague 6

Record

Zoom

Nikolaos Melissinos (FIT CTU) will speak at the regular Monday seminar of the G²OAT group. In his talk, he will speak about the complexity of finding optimal vertex and edge regulators in graphs He will show that computing vertex controllers is FPT-hard for some parameters but W[1]-hard for others, while computing edge controllers is NP-hard and in certain cases W[1]-hard.

Event website

 

Abstract

A graph G is locally irregular if no two of its adjacent vertices have the same degree. The authors of [Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. SWAT, 2022] introduced and provided some initial algorithmic results on the problem of finding a locally irregular induced subgraph of a given graph G of maximum order, or, equivalently, computing a subset S of V(G) of minimum order, whose deletion from G results in a locally irregular graph; S is called an optimal vertex-irregulator of G. In this work we provide an in-depth analysis of the parameterised complexity of computing an optimal vertex-irregulator of a given graph G. Moreover, we introduce and study a variation of this problem, where S is a subset of the edges of G; in this case, S is denoted as an optimal edge-irregulator of G. We prove that computing an optimal vertex-irregulator of a graph G is in FPT when parameterised by various structural parameters of G, while it is W[1]-hard when parameterised by the feedback vertex set number or the treedepth of G. Moreover, computing an optimal edge-irregulator of a graph G is in FPT when parameterised by the vertex integrity of G, while it is NP-hard even if G is a planar bipartite graph of maximum degree 6, and W[1]-hard when parameterised by the size of the solution, the feedback vertex set or the treedepth of G. Our results paint a comprehensive picture of the tractability of both problems studied here.

The person responsible for the content of this page: Bc. Veronika Dvořáková