Dissertation theses
Dependability models and reliability parameters’ computation with respect to realistic properties of modeled systems
Specialist supervisor: Ing. Martin Kohlík, Ph.D.
Currently used dependability models are often based on simplified processes leading to unrealistic estimations of dependability and reliability parameters of the modeled systems [1] or rough pessimistic estimations [2]. The aim of the research should be a methodology of the dependability model design allowing fast and accurate calculations of the dependability parameters of the system. The methodology should take over-time changes (e.g. aging, maintenance, repairs) of the system, the structure (blocks and their fail-safes) of the system, and the ways of acquiring dependability parameter data from real applications into account [3].
- [1] Electronic Reliability Design Handbook - MIL-HDBK-338B. US Department of Defense, 1998.
- [2] M. Kohlík, "Hierarchical Dependability Models Based on Markov Chains", Dissertation thesis, Czech Technical University in Prague, 2015.
- [3] Daňhel, M.: "Prediction and Analysis of Mission Critical Systems Dependability", Dissertation thesis, Czech Technical University in Prague, 2018.
Design methodology of dependable fault-tolerant and attack resistant systems
The research of methods and processes in the design of systems with pre-defined reliability parameters using programmable hardware sources (FPGA, processors). The reaserch of the impact of a redundancy at different levels (space, time, software, hardware) to the attack resistance of the whole system. The research of automatization methods of the design processes including the dependability models construction and dependability parameters computations. Partial results and proposed methods will be evaluated by real-life application and benchmarks.
Formalization and automatization of digital system design methods
The research area will be based on formal methods and models (Petri Nets, Markov chains, UML diagrams) to use them for simplificationa and automatization of digital design process. The connection of verification methods and dependability modeling at all design periods to obtain an optimized structure according different parameters is assumed. The aim should be the combination of different models and detailed study of their relations and possible automatic conversions. Partial results and proposed methods will be evaluated by real-life applications and benchmarks. An integral part of the topic is the study of possible new models used in industry and / or research.
New architectures with guaranteed level of dependability parameters for reconfigurable circuits
Specialist supervisor: Ing. Pavel Kubalík, Ph.D.
Main aims of this research are:
- Design of new architectures based on on-line error control codes available for implementation in reconfigurable hardware (FPGAs). The fulfillment of required reliable parameters is essential, together with a low area overhead, appropriate operational frequency, and low power consumption for mission-critical systems (intelligent cars, robots, etc.) where FPGA are more and more used due to their properties (and price).
- Proposal of appropriate methods to automatically select the best type of fault-tolerance and safety with respect to a particular application, its requirements and the necessary constrains, including design speed.
- Utilization of existing models and modifying them to solve this problem at the system level, and linking them to the hierarchical dependability models, created at the department.
The target platform will be FPGA circuits allowing fault recovery of a part design or completely change of an implemented function. The research will be mainly focused on the utilization of new error control codes for an optimized architecture enabled error detection and correction suitable for FPGA. The standard known fault-tolerant structures such as TMR or a duplex will be taken into account, too.
All proposed architectures and the partial results will be tested on standard known benchmarks and on dedicated sets of own circuits. The evaluation criterion will be mainly focused on realistic calculations of dependable parameters, together with low area occupation requirements.
Research of Dependability Improvement at ISA Level
The proposed research has to verify possibilities, how to achieve (and guarantee) predefined system design constraints (size, power-consumption, dependability characteristics, fault-tolerance and attack-resistance levels via trade-off between hardware and software parts and types.
It is supposed to use Codasip system and RISC-V processor (open-source hardware instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles, designed (not only) for embedded applications, where low-power and performance are emphasized. Codasip can provide their processors with high-level tools that enable to configure the RISC-V cores, to automatically generate toolchains and synthesizable, human-readable Verilog RTL. Codasip system (https://codasip.com/) offers a verification environment, too.
The research will contain proper evaluation of obtained architecture by improved dependability models. The possible methods will be ISA improvement (e.g. adding the cryptographic instructions, specialized block, using of more application-specific processors). Final experiments will be performed by simulations and FPGA implementations.