Laboratoř RFID

V Laboratoři RFID se věnujeme technologiím bezkontaktních, ale i kontaktních čipových karet, a také souvisejícím tématům. Provádíme zde výzkum zabezpečení čipových karet, a to jednak jejich bezpečné komunikace, ale také stavebních prvků bezpečnostních čipů, jako jsou šifry, generátory náhodných čísel (TRNG) a fyzicky neklonovatelné funkce (PUF).

Aplikace

Při výzkumu v oblasti bezpečnosti je potřeba provádět experimenty, jako například měření chování náhodných generátorů při různých teplotách. K tomu nám slouží speciální tepelná komora, která dokáže měnit a udržovat teplotu v rozsahu -40 až +180 °C.

V laboratoři také vyvíjíme a testujeme přípravky pro výuku v předmětech Hardwarová bezpečnost (NI-HWB) a Bezpečnost a technické prostředky (MI-BHW.16).

Vybavení

Klimatická komora Binder MK-56obj

  • Dynamická komora s řízením teploty -40 až +180 °C
  • Ovládaná přes Ethernet, řízení pomocí vlastního SW v C++ nebo Python
  • Měření teploty vzduchu i teploty objektu (např. čipu) přídavným čidlem

Osciloskop Lecroy HDO9404

  • Šířka pásma 4 GHz, vzorkovací frekvence 40 GSa/s, rozlišení 10 bitů
  • Paměť max. 128 MSa
  • 2 aktivní diferenciální sondy s plnou šířkou pásma (4 GHz)

3D pozicioner

3D pozicioner měřicí sondy blízkého pole vlastní výroby (mechanika 3D tiskárny, bakalářská práce)

Čemu se laboratoř věnuje?

Projekty

Kryptografie pro zabezpečení elektronických zařízení

Program
Studentská grantová soutěž ČVUT
Kód
SGS17/214/OHK3/3T/18
Období
2017 - 2019
Popis
Cílem projektu je výzkum v oblasti bezpečnosti vestavných systémů. Vývojáři typicky navrhují specifická kryptografická primitiva pro elektronická zařízení umožňující jejich nasazení do značně nebezpečného prostředí. Tato primitiva musí být přizpůsobena vlastnostem použitých vestavných elektronických zařízení tak, aby zajistila požadovanou úroveň zabezpečení.

Publikace

True random number generator based on ring oscillator PUF circuit

Rok
2017
Publikováno
Microprocessors and Microsystems. 2017, 53 33-41. ISSN 0141-9331.
Typ
Článek
Anotace
In this paper we propose the method of generating true random numbers utilizing the circuit primarily designed as Physically Unclonable Function (PUF) based on ring oscillators. The goal is to show that it is possible to design the universal crypto system, that can be used for various applications – the PUF can be utilized for asymmetric cryptography and generating asymmetric keys, True Random Number Generator (TRNG) for symmetric cryptography (generating session and ephemeral keys), nonces and salts. In the paper the results of evaluation of such a circuit utilized for TRNG purpose are presented.

True Random Number Generator Based on ROPUF Circuit

Rok
2016
Publikováno
Proceedings of 19th Euromicro Conference on Digital System Design DSD 2016. Los Alamitos, CA: IEEE Computer Soc., 2016. pp. 519-523. ISBN 978-1-5090-2816-0.
Typ
Stať ve sborníku
Anotace
In this paper we propose the method of generating true random numbers utilizing the circuit primarily designed as PUF based on ring oscillators. The goal is to prove that it is possible to design the universal crypto system, that can be used for various applications - the PUF can be utilized for asymmetric cryptography and generating asymmetric keys, TRNG for symmetric cryptography (generating session and ephemeral keys), nonces and salts. In the paper the results of evaluation of such a circuit utilized for TRNG purpose are presented.

Všechny publikace

Temperature Dependence of ROPUF on FPGA

Rok
2016
Publikováno
Proceedings of 19th Euromicro Conference on Digital System Design DSD 2016. Los Alamitos, CA: IEEE Computer Soc., 2016. p. 698-702. ISBN 978-1-5090-2816-0.
Typ
Stať ve sborníku
Anotace
This paper continues and extends our previous work introduced in [3], [4], in which we proposed a ring oscillator (RO) based Physical Unclonable Function (PUF) on FPGA. Our approach is able to extract multiple output bits from each RO pair in contrary to the classical approach, where frequencies of ROs are compared. Our original design used asymmetric ROs, i.e. without constrained placement of gates. In this paper, we investigate the behaviour of the proposed ROPUF using symmetric ROs, and compare them against the original approach with asymmetric ROs. The measurement results showed that the ROPUF with symmetric ROs is approximately two times more stable with varying temperature. We have also compared three different methods of information extraction from ROPUF based on frequency measurement. The measured results show that out of these three methods, our one is the most stable against change of temperature. The measurements were performed on Digilent Basys 2 FPGA boards (Xilinx Spartan3E-100 CP132).

Improved ring oscillator PUF on FPGA and its properties

Rok
2016
Publikováno
Microprocessors and Microsystems. 2016, 47 55-63. ISSN 0141-9331.
Typ
Článek
Anotace
PUFs (Physical Unclonable Function) are increasingly used in proposals of security architectures for device identification and cryptographic key generation. Many PUF designs for FPGAs proposed up to this day are based on ring oscillators (RO). The classical approach is to compare frequencies of ROs and produce a single output bit from each pair of ROs based on the result of comparison of their frequencies. This ROPUF design requires all ROs to be mutually symmetric and also the number of pairs of ROs is limited in order to preserve the independence of bits in the PUF response. This led us to design a new ROPUF on FPGA which is capable of generating multiple output bits from each pair of ROs and is also allowing to create higher number of pairs of ROs, thereby making the use of ROs more efficient than the classical approach. Our PUF design is based on selecting a particular part of a counter value and using it for the PUF output. By applying Gray code on the counter values, we have considerably improved the PUF's statistical properties. In principle, this PUF design does not need the ROs to be mutually symmetric, however, it is shown that this ROPUF design has significantly better properties with varying supply voltage when symmetric ROs are used. All of the presented measurements were performed on Digilent Basys 2 FPGA Boards (Xilinx Spartan3E-100 CP132). In this work, we provide a more detailed description of the PUF design on FPGA and the behaviour of ROs with varying supply voltage. Our proposed PUF architecture offers more output bits with required statistical properties from each RO pair than the classical approach, where frequencies of ROs are compared. The presented improvements significantly reduce the dependence on fluctuation of supply voltage.

Proposal and Properties of Ring Oscillator-Based PUF on FPGA

Rok
2016
Publikováno
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS. 2016, 25(3), ISSN 0218-1266.
Typ
Článek
Anotace
This paper deals with design of physical unclonable functions (PUFs) based on field-programmable gate array (FPGA). The goal was to propose a cheap, efficient and secure device identification or even a cryptographic key generation based on PUFs. Therefore, a design of a ring oscillator (RO)-based PUF producing more output bits from each RO pair is presented. 24 Digilent Basys 2 FPGA boards (Spartan-3E) and 6 Digilent Nexys 3 FPGA boards (Spartan-6) were tested and statistically evaluated indicating suitability of the proposed design for device identification. A stable PUF output is required for generating cryptographic keys. As post-processing technique to further improve the efficiency of this PUF design, we used Gray code on the obtained bits from RO pairs. Ultimately, the PUF design is combined with error correction code and together with Gray code is able to generate cryptographic keys of sufficient length.

A Design of Ring Oscillator Based PUF on FPGA

Rok
2015
Publikováno
Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2015 IEEE 18th International Symposium on. Piscataway: IEEE, 2015. p. 37-42. ISBN 978-1-4799-6780-3.
Typ
Stať ve sborníku
Anotace
This paper deals with design of Physical Unclonable Functions (PUFs) based on FPGA. The goal was to propose a cheap, efficient and secure device identification or even a cryptographic key generation based on PUFs. Therefore, a proposal of a ring oscillator (RO) based PUF producing more output bits from one RO pair is presented. 24 Digilent Basys 2 FPGA boards were tested and statistically evaluated indicating suitability of the proposed design for device identification.

Kde nás najdete?

Laboratoř RFID
Katedra informační bezpečnosti
Fakulta informačních technologií
České vysoké učení technické v Praze

Místnost TH:A-1158 (Budova A, 11. patro)
Thákurova 7
Praha 6 – Dejvice
160 00

Kontaktní osoba

Ing. Jiří Buček, Ph.D.

Za obsah stránky zodpovídá: doc. Ing. Štěpán Starosta, Ph.D.