Ing. Robert Hülle, Ph.D.

Publikace

Evaluation of the SEU Faults Coverage of a Simple Fault Model for Application-Oriented FPGA Testing

Rok
2020
Publikováno
Proceedings of the 23rd Euromicro Conference on Digital Systems Design. Los Alamitos, CA: IEEE Computer Soc., 2020. p. 684-691. ISBN 978-1-7281-9535-3.
Typ
Stať ve sborníku
Anotace
Testing of FPGA-based designs persists to be a challenging task because of the complex FPGA architecture with heterogeneous components, and therefore a complicated fault model. The standard stuck-at fault model has been found insufficient. On the other hand, very precise FPGA fault models have been recently devised. However, these models are often excessively complex and require a lot of resources (run-time, memory) to manipulate with. In this paper, we propose a simple yet efficient combined fault model comprising bit-flips in look-up tables and stuck-at faults in the rest of logic. On~top of this model, a dedicated SAT-based application-oriented ATPG has been designed. The main contribution of this paper is the evaluation of efficiency of the fault model with the respective ATPG by exhaustive hardware emulation of all possible SEUs in the configuration memory that may influence the functionality of the circuit implemented in the FPGA. We show that the obtained fault coverage reaches up to more than 99%, which makes the method applicable in practice. Even though combinational circuits are assumed only, the method can be used to quickly test safety-critical combinational cores.

ZATPG: SAT-based Test Patterns Generator with Zero-Aliasing in Temporal Compaction

Rok
2018
Publikováno
Microprocessors and Microsystems. 2018, 2018(61), 43-57. ISSN 0141-9331.
Typ
Článek
Anotace
Aliasing in test response compaction is an important source of fault coverage loss. Methods to avoid the aliasing mostly require modification of the compactor to some extent. This can lead to a higher compactor complexity and consequently to higher area overhead, longer signal propagation delays, etc. In contrast to this standard approach, we propose a novel method, the Zero-aliasing ATPG (ZATPG), which is able to reduce the aliasing for any compactor used, thus without need of the compactor modification or redesign. This is achieved by constraining the test pattern generation process (ATPG), so that patterns exhibiting no aliasing are produced directly. Aliasing in both the spatial and temporal compactors is assumed. The method is based on modification of very basic SAT-based ATPG principles, thus any SAT-based ATPG can be used for its purpose. Also, the method is general enough to be applicable to any compactor design. We demonstrate our method on MISR compactors based on LFSR and cellular automata, using the single stuck-at fault model. Our method is able to find a test with zero aliasing and complete fault coverage for smaller compactors than a conventional, unguided ATPG. Thus, the area overhead of the compactor can be reduced, while the complete fault coverage is preserved.

Generovánı́ testu s nulovým maskovánı́m poruch

Rok
2017
Publikováno
Počítačové architektúry & diagnostika PAD 2017 - Zborník príspevkov. Bratislava: STU Scientific, 2017. pp. 35-38. ISBN 978-80-972784-0-3.
Typ
Stať ve sborníku
Anotace
V tomto článku shrnuji své výsledky za 2. rok doktorského studia. Prezentuji automatický generátor testovacı́ch vektorů (ATPG), který je schopen vygenerovat test s nulovým maskovánı́m v daném libovolném kompaktoru: ZATPG. Disku- tuji silné a slabé stránky tohoto algoritmu, včetně námětů, jak jeho slabé stránky překonat. V závěru nastiňuji dalšı́ směřovánı́ výzkumu, které by mělo vést k disertačnı́ práci.

SAT-based ATPG for Zero-Aliasing Compaction

Rok
2017
Publikováno
Proc. of the 20th Euromicro Conference on Digital System Design. Piscataway, NJ: IEEE, 2017. p. 307-314. ISBN 978-1-5386-2146-2.
Typ
Stať ve sborníku
Anotace
Aliasing in the test response compaction is an important source of fault coverage loss. Methods to combat the aliasing generally require modification of the compactor to some extent. This can lead to a higher compactor complexity and consequently to higher area overhead, longer signal propagation delays, etc. We propose a novel method, the Zero-aliasing ATPG (ZATPG), which is able to reduce the aliasing without need of designing new compactors. ZATPG works by augmenting the SAT-based ATPG process to constrain test pattern generation to produce no aliasing in the compactor. The method is general enough to be applicable to any compactor design. We demonstrate our method on LFSR-based MISR compactors, using the Single Stuck-At fault model. Our method is able to find a test with zero-aliasing and complete fault coverage for smaller compactors than conventional, unguided ATPG. Thus, the area overhead of the compactor can be reduced, while the complete fault coverage is retained.

Generovánı́ testu pro prostředky vestavěné diagnostiky

Rok
2016
Publikováno
Počítačové Architektury & Diagnostika PAD 2016 - Sborník příspěvků. Brno: Vysoké učení technické v Brně, 2016. ISBN 978-80-214-5376-0.
Typ
Stať ve sborníku
Anotace
V tomto článku shrnuji své výsledky za 1. rok dok- torského studia, porovnánı́ poruchových modelů pro aplikačně specifické testovánı́ FPGA, zkoumánı́ vlastností SAT instancí vzniklých v procesu ATPG. Dále nastiňuji dalšı́ možný směr pokračovánı́ výzkumu, generovánı́ testu s nulovým aliasingem.

SAT-ATPG for Application-Oriented FPGA Testing

Rok
2016
Publikováno
Proceedings of the 15th Biennial Baltic Electronics Conference. Tallin: Tallin University of Technology, 2016. p. 83-86. ISSN 1736-3705. ISBN 978-1-5090-1393-7.
Typ
Stať ve sborníku
Anotace
In this paper we propose a SAT-based ATPG algorithm for application-oriented FPGA testing. For this purpose, a novel fault model is introduced which combines the stuck-at fault model for interconnects testing with the bit-flip model for LUT testing. The concept of SAT-based ATPG enables integrating these two models easily. Fault coverage and fault dominance of the two models is discussed in this paper, yielding suggestions for using the proposed combined model.