Seminář G²OAT: Matrices with Bounded Graver Bases

Kdy

2. 5. 2023
13:00

Kde

Místnost TH:A-1247

Thákurova 7, Praha 6

V rámci pravidelného pondělního semináře skupiny G²OAT vystoupí Kristýna Pekárková z Fakulty informatiky Masarykovy univerzity. Ve své odborné přednášce se bude věnovat tématu „Characterization of Matrices with Bounded Graver Bases and Depth Parameters and Applications to Integer Programming“.

Web akce

Abstrakt

An intensive line of research on fixed-parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix A and the norm of the elements of its Graver basis. In particular, integer programming is fixed-parameter tractable when parameterized by the primal tree-depth and the entry complexity of A, and when parameterized by the dual tree-depth and the entry complexity of A; both these parameterizations imply that A is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to an equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the 𝓁₁-norm of the Graver basis is bounded by a function of the maximum 𝓁₁-norm of a circuit of A. We use our results to design a parameterized algorithm that constructs a matrix equivalent to an input matrix A that has small primal/dual tree depth and entry complexity if such an equivalent matrix exists.

Our results yield parameterized algorithms for integer programming when parameterized by the 𝓁₁-norm of the Graver basis of the constraint matrix when parameterized by the 𝓁₁-norm of the circuits of the constraint matrix when parameterized by the smallest primal tree-depth and entry complexity of a matrix equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix equivalent to the constraint matrix.

The talk is based on results of joint work with M. Briański, M. Koutecký, D. Král, and F. Schröder.

Za obsah stránky zodpovídá: Bc. Veronika Dvořáková