Dizertační práce
Detekce anomálií a jejich mitigace v počítačových a IoT sítích
Školitel-specialista: Ing. Tomáš Čejka, Ph.D.
Obsahem práce bude výzkum algoritmů pro detekci, identifikaci a mitigaci bezpečnostních hrozeb a anomálií v počítačových sítích se zaměřením na oblast tzv. Internetu věcí (IoT). Z pohledu síťové bezpečnosti je nutné nahlížet na oblast IoT jako na hrozbu a to jak pro samotné IoT, tak i pro další zařízení, kdy IoT se může stát zdrojem hrozby. Je proto důležité sledovat komunikaci v těchto sítích, odvozovat z významných událostí v komunikaci další meta informace a tyto informace používat pro identifikaci zdroje hrozeb, mitigaci hrozeb a řízení strategie mitigace.
Cílem dizertační práce bude nalezení vhodných možností, jak vytvářet modely dlouhodobě uchovávající negativní či pozitivní události v komunikaci, a jak na základě těchto modelů co nejrychleji (s minimální latencí) tyto detekovat, identifikovat a odstranit zdroje problémů. Dizertabilita tématu je založena na faktech, že jde o řešení velmi netriviálních problémů, kterými jsou zpracování a filtrace velkých objemů dat společně s modelováním síťového provozu, hledání odchylek,identifikace zdrojů problémů a správné řízení mitigace těchto problémů. Na rozdíl od klasických IP sítí, IoT prostředí navíc významně využívá specifických fyzických vrstev v podobě specializovaných komunikačních protokolů, což s sebou přináší nové potenciální vektory útoků, které jsou běžnou analýzou IP provozu nedetekovatelné. Z tohoto důvodu je potřeba hledat nové způsoby monitorování IoT provozu. Základem bude výzkum v oblasti možností využití statistických metod, pravděpodobnostních modelů a využití algoritmů umělé inteligence.
Vzhledem k současným rychlostem síťových přenosů a požadavkům na on-line monitorování je nutné algoritmy navrhovat a realizovat s využitím dekompozice na hardwarovou a softwarovou část a s použitím vhodných technologií hardwarové akcelerace (např. FPGA).
Formalizace a automatizace metod návrhu číslicových systémů
Výzkum možností využití formálních metod (Petriho sítě, Markovské řetězce, UML diagramy) pro zjednodušení návrhu číslicového systému a jeho automatizaci. Předpokládejme spojení s verifikací a výpočty spolehlivostních ukazatelů ve všech návrhových fázích a úpravu a optimalizaci řešení podle různých parametrů. Cílem by měla být i vzájemná kombinace různých typů modelů a podrobný výzkum vztahů a automatizovaného přechodu mezi nimi. Dílčí výsledky a navržené metody budou průběžně ověřovány na reálných aplikacích a benchmarcích. Nedílnou součástí tématu je i studium možných nových modelů používaných v průmyslu a/nebo ve výzkumu.
Metodologie návrhu spolehlivých, útokům a poruchám odolných systémů
Výzkum způsobů a postupů v návrhu systému s předem danými spolehlivostními parametry na bázi programovatelného hardwaru (FPGA i procesorů). Výzkum vlivu redundance na různých úrovních (v prostoru, čase, SW, HW) na odolnost proti útokům. Zahrnutí možné automatizace postupů včetně vytvoření spolehlivostních modelů a výpočtů spolehlivostních parametrů. Předpokládá se průběžné ověřování výsledků na reálných aplikacích a benchmarcích.
Modely a výpočty spolehlivostních ukazatelů s ohledem na realistické parametry modelovaných systémů
Školitel-specialista: Ing. Martin Kohlík, Ph.D.
Současné spolehlivostní modely často využívají zjednodušené postupy vedoucí k nerealistickým odhadům spolehlivosti a životnosti modelovaných systémů [1], nebo používají hrubé pesimistické odhady [2]. Cílem práce by měla být metodologie návrhu spolehlivostního modelu, který umožní rychlé a přesné výpočty spolehlivostních parametrů systému. Metodologie by měla zohlednit změny systému v čase (např. stárnutí, údržbu, opravy), strukturu systému (jednotlivé bloky a jejich případné zabezpečení proti poruchám) a možnosti získávání spolehlivostních ukazatelů z reálných dat [3].
- [1] Electronic Reliability Design Handbook - MIL-HDBK-338B. US Department of Defense, 1998.
- [2] M. Kohlík, "Hierarchical Dependability Models Based on Markov Chains", Dissertation thesis, Czech Technical University in Prague, 2015.
- [3] Daňhel, M.: "Prediction and Analysis of Mission Critical Systems Dependability", Dissertation thesis, Czech Technical University in Prague, 2018.
Nové architektury určené pro rekonfigurovatelné obvody s garantovanou úrovní spolehlivostních parametrů
Školitel-specialista: Ing. Pavel Kubalík, Ph.D.
Cílem tohoto výzkumu je:
- návrh architektur založených na on-line detekci a opravě chyb pro FPGA obvody, které budou použitelné pro mission-critical systémy (inteligentní auta apod.), tedy systémy, u kterých je nutné dodržet požadovanou úroveň spolehlivostních parametrů, spolu se zajištěním minimální velikosti, pracovní frekvence (real-time), a tudíž i spotřeby.
- návrh vhodných metod, které by automatizovaně vybraly vhodný typ zabezpečení s ohledem na konkrétní aplikaci, její požadavky a nutná omezení (design constrains), včetně rychlosti návrhu.
- využití existujících modelů a jejich úprava, které by tento problém řešily na systémové úrovni a jejich propojení s hierarchickými modely spolehlivosti, vytvářenými na katedře.
Cílovou platformou bude FPGA obvod umožňující zotavení po poruše a případně i možnost změny funkce celého implementovaného systému. Výzkum klade důraz zejména na využití nových a upravených typů bezpečnostních kódů pro optimalizovanou architekturu s detekcí a opravou chyb vhodnou pro FPGA. Klasické struktury odolné proti poruchám (TMR, duplex) budou také zohledněny a případně využity.
Vytvořené architektury budou v průběhu výzkumu ověřovány na reálných benchmarcích a vlastní sadě obvodů. Hodnotícím parametrem bude (kromě velikosti) realistický výpočet dosažených spolehlivostních parametrů.
Výzkum možností vylepšení spolehlivosti a bezpečnosti na úrovni ISA
Obsahem tématu je výzkum ověření možností, jak dosáhnout (a garantovat) předem určená omezení při návrhu systému (velikost, spotřebu, požadované ukazatele spolehlivosti, odolnost proti poruchám/útokům) vhodnou kombinací výběru a poměru hardwaru a softwaru. Předpokládáme využití systému pro návrh procesorů Codasip a otevřeného procesoru RISC-V (RISC-V byl specielně navržen pro široké použití nejen, pro vestavné systémy s důrazem na výkon i na spotřebu). Systém Codasip (https://codasip.com/) umožňuje navrhovat a upravovat specializované procesory, a to včetně verifikačních nástrojů.
Součástí výzkumu bude i použití a případná úprava vhodných spolehlivostních modelů pro ověření dosažení požadovaných parametrů s hlavním cílem určení nejlepší realizace vzhledem k původním požadavkům, tzn. například úprava instrukční sady přidáním kryptografických instrukcí, přidání dalšího bloku, použití více specializovaných procesorů apod.
Ověření výsledků bude možné jednak simulací a jednak implementací ve vhodné FPGA technologii.