Aktuální informace FIT ke koronaviru najdete zde.

Ing. Miroslav Čepek, Ph.D.

Publikace

Meta-learning approach to neural network optimization

Autoři
Kordík, P.; Čepek, M.; Koutník, J.; Drchal, J.; Kovářík, O.; Šnorek, M.
Rok
2010
Publikováno
Neural Networks. 2010, 2010 (23)(4), 568-582. ISSN 0893-6080.
Typ
Článek
Anotace
Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply metalearning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feedforward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on wide number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.

The Effect of Modelling Method to the Inductive Preprocessing Algorithm

Autoři
Čepek, M.; Kordík, P.; Šnorek, M.
Rok
2010
Publikováno
Proceedings of 3rd International Conference on Inductive Modelling 2010. Kiev: Ukr. INTEI, 2010. pp. 131-138.
Typ
Stať ve sborníku
Anotace
The data preprocessing is very important part of the knowledge discovery process. Data mining systems con- tains tens of preprocessing methods (for example methods for missing data imputation, data reduction, discretization, data enrichment, etc...) and usually it is not clear which methods to use. The selection of preprocessing methods appropriate for particular dataset needs strong experience and a lot of experimenting. In this paper we will test influence of modelling method which is the corner stone of Inductive Preprocessing Algorithm. Modelling method is used to evaluate evolved sequence of the preprocessing methods. In this paper we compare four modelling methods in respect to final achieved accuracy. The tested modelling methods are Polynomial model, Decision Tree, SVM and Logistic Function Classifier. To test our automatic preprocessing utilize several real-world datasets available from UCI Machine learning repository.

Testing of Inductive Preprocessing Algorithm

Autoři
Čepek, M.; Kordík, P.; Šnorek, M.
Rok
2009
Publikováno
Proceedings of the 3rd International Workshop on Inductive Modelling 2009. Kiev: Ukr. INTEI, 2009. pp. 13-18.
Typ
Stať ve sborníku
Anotace
The data preprocessing is very important part of the knowledge discovery process. Data mining systems contains tens of preprocessing methods (for example methods for missing data imputation, data reduction, discretization, data enrichment, etc...) and usually it is not clear which methods to use. The selection of preprocessing methods appropriate for particular dataset needs strong experience and a lot of experimenting. In this paper we will test our extension of inductive approach to data preprocessing. We developed inductive preprocessing method which utilizes genetic algorithm to compose from scratch a sequence of preprocessing methods which fits to the data and allows successful model to be created. To test our automatic preprocessing utilize several real-world datasets available from UCI Machine learning repository.