Ing. Šimon Schierreich

Publikace

The Complexity of Fair Division of Indivisible Items with Externalities

Autoři
Deligkas, A.; Eiben, E.; Korchemna, V.; Schierreich, Š.
Rok
2024
Publikováno
Proceedings of the 38th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2024. p. 9653-9661. ISSN 2159-5399.
Typ
Stať ve sborníku
Anotace
We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the "standard" setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations.

Balancing the Spread of Two Opinions in Sparse Social Networks (Student Abstract)

Rok
2022
Publikováno
Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022. p. 12987-12988. ISSN 2159-5399. ISBN 978-1-57735-876-3.
Typ
Stať ve sborníku
Anotace
We propose a new discrete model for simultaneously spreading two opinions within a social network inspired by the famous Target Set Selection problem. We are given a social network, a seed-set of agents for each opinion, and two thresholds per agent. The first threshold represents the willingness of an agent to adopt an opinion if she has no opinion at all, while the second threshold states the readiness to acquire a second opinion. The goal is to add as few agents as possible to the initial seed-sets such that, once the process started with these seed-set stabilises, each agent has either both opinions or none. We perform an initial study of its computational complexity. It is not surprising that the problem is NP-hard even in quite restricted settings. Therefore, we investigate the complexity of the problem from the parameterized point-of-view with special focus on sparse networks, which appears often in practice. Among other things, we show that the proposed problem is in the FPT complexity class if we parameterize by the vertex cover number of the underlying graph.

Controlling the Spread of Two Secrets in Diverse Social Networks (Student Abstract)

Autoři
Blažej, V.; Knop, D.; Schierreich, Š.
Rok
2022
Publikováno
Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022. p. 12919-12920. ISSN 2159-5399. ISBN 978-1-57735-876-3.
Typ
Stať ve sborníku
Anotace
nformation diffusion in social networks is a well-studied concept in social choice theory. We propose the study of the diffusion of two secrets in a heterogeneous environment from the complexity perspective, that is, there are two different networks with the same set of agents (e.g., the structure of the set of followers might be different in two distinct social networks). Formally, our model combines two group identification processes for which we do have independent desiderata---either constructive, where we would like a given group of agents to be exposed to a secret, or destructive, where a given group of agents should not be exposed to a secret. To be able to reach these targets, we can either delete an agent or introduce a previously latent agent. Our results are mostly negative---all of the problems are NP-hard. Therefore, we propose a parameterized study with respect to the natural parameters, the number of influenced agents, the size of the required/protected agent sets, and the duration of the diffusion process. Most of the studied problems remain W[1]-hard even for a combination of these parameters. We complement these results with nearly optimal XP algorithms.

Hedonic Diversity Games: A Complexity Picture with More than Two Colors

Autoři
Ganian, R.; Hamm, T.; Knop, D.; Schierreich, Š.; Suchý, O.
Rok
2022
Publikováno
Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022. p. 5034-5042. ISSN 2159-5399. ISBN 978-1-57735-876-3.
Typ
Stať ve sborníku
Anotace
Hedonic diversity games are a variant of the classical Hedonic games designed to better model a variety of questions concerning diversity and fairness. Previous works mainly targeted the case with two diversity classes (represented as colors in the model) and provided a set of initial complexity-theoretic and existential results concerning Nash and Individually stable outcomes. Here, we design new algorithms accompanied with lower bounds which provide a full parameterized-complexity picture for computing Nash and Individually stable outcomes with respect to the most natural parameterizations of the problem. Crucially, our results hold for general Hedonic diversity games where the number of colors is not necessarily restricted to two, and show that---apart from two trivial cases---a necessary condition for tractability in this setting is that the number of colors is bounded by the parameter. Moreover, for the special case of two colors we resolve an open question asked in previous work~(Boehmer and Elkind, AAAI 2020).

On Polynomial Kernels for Traveling Salesperson Problem and Its Generalizations

Autoři
Blažej, V.; Choudhary, P.; Knop, D.; Schierreich, Š.; Suchý, O.; Valla, T.
Rok
2022
Publikováno
30th Annual European Symposium on Algorithms (ESA 2022). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2022. p. 22:1-22:16. Leibniz International Proceedings in Informatics (LIPIcs). vol. 244. ISSN 1868-8969. ISBN 978-3-95977-247-1.
Typ
Stať ve sborníku
Anotace
For many problems, the important instances from practice possess certain structure that one should reflect in the design of specific algorithms. As data reduction is an important and inextricable part of today’s computation, we employ one of the most successful models of such precomputation - the kernelization. Within this framework, we focus on Traveling Salesperson Problem (TSP) and some of its generalizations. We provide a kernel for TSP with size polynomial in either the feedback edge set number or the size of a modulator to constant-sized components. For its generalizations, we also consider other structural parameters such as the vertex cover number and the size of a modulator to constant-sized paths. We complement our results from the negative side by showing that the existence of a polynomial-sized kernel with respect to the fractioning number, the combined parameter maximum degree and treewidth, and, in the case of {Subset TSP}, modulator to disjoint cycles (i.e., the treewidth two graphs) is unlikely.

Waypoint routing on bounded treewidth graphs

Rok
2022
Publikováno
Information Processing Letters. 2022, 173 106165:1-106165:9. ISSN 0020-0190.
Typ
Článek
Anotace
In the Waypoint Routing Problem one is given an undirected capacitated and weighted graph G, a source-destination pair s, t∈V(G) and a set W⊆V(G), of waypoints. The task is to find a walk which starts at the source vertex s, visits, in any order, all waypoints, ends at the destination vertex t, respects edge capacities, that is, traverses each edge at most as many times as is its capacity, and minimizes the cost computed as the sum of costs of traversed edges with multiplicities. We study the problem for graphs of bounded treewidth and present a new algorithm for the problem working in 2^{O(tw)}·n time, significantly improving upon the previously known algorithms. We also show that this running time is optimal for the problem under Exponential Time Hypothesis